Trabalho de Conclusão de Curso

Introdução à Teoria Qualitativa das Equações Diferenciais

Orientando: Daniel Medeiros da Silva

Orientadora: Prof^a. Dra. Ana Cristina de Oliveira Mereu

Licenciatura em Matemática

Sorocaba / 2014

Resumo

O presente trabalho tem como objetivo principal o estudo da Teoria de Averaging e a aplicação do Método de Averaging para se determinar o número máximo de ciclos limites que bifurcam do centro planar pertubado por uma classe de sistemas diferenciais polinomiais de Liénard, ou seja, um sistema do tipo:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -x - \epsilon(f_n(x)y + g_m(x)), \end{cases}$$

onde verificaremos que o número máximo de ciclos limites do sistema acima é o valor máximo de $\left[\frac{n}{2}\right]$, sendo n o grau do polinômio f_n .

Outros objetivos são estudar alguns temas dos aspectos gerais da teoria qualitativa das EDOs como: O estudo de aspectos qualitativos de equações diferenciais envolvendo sistemas lineares, Teorema de Existência e Unicidade de soluções, noções básicas de campos de vetores, Teorema de Grobman-Hartman, Teorema do Fluxo Tubular, conjuntos limites das trajetórias, Teorema de Poincaré-Bendixson.

Palavras-chave

Equações Diferenciais; Sistemas Dinâmicos, Ciclos Limites; Método Averaging

Objetivos

O objetivo principal deste trabalho é iniciar os estudos em sistemas dinâmicos principalmente no problema de encontrar ciclos limites em sistemas planares, através de estudos de resultados clássicos da teoria qualitativa das equações diferenciais e do Método de Averaging, bem como a aplicação de tal conhecimento para o cálculo do número de ciclos limites que podem bifucar de centros planares. Além disso, outros objetivos são:

- Aprender a fazer levantamento/pesquisa bibliográfica.
- Despertar no aluno o interesse pela matemática, principalmente no ramo de sistemas dinâmicos e, futuramente, desenvolver estes assuntos para um refinamento adicional num curso de pós-graduação.
- Possibilitar ao aluno não só o preenchimento das lacunas em sua formação mas também aprimorar seu espírito crítico.

Introdução

Repetições ocorrem frequentemente no dia a dia das pessoas: toda manhã o Sol nasce, todo dia primeiro de janeiro celebra-se o Ano Novo, a cada quatro anos um presidente é eleito, entre outros. Todos estes fenômenos possuem um fator em comum, a *periodicidade*.

Este projeto é voltado àqueles fenômenos periódicos que são descritos por uma função $x: \mathbb{R} \to \mathbb{R}^2$ cujo comportamento é governado por um sistema planar de equações diferenciais ordinárias.

Uma função $x: \mathbb{R} \to X$, onde X é um conjunto arbitrário não-nulo, é periódica de período T se x(t+T)=x(t), para todo $t\in \mathbb{R}$ e t é interpretada como uma variável tempo.

Um *ciclo limite* de um sistema de equações diferenciais é uma solução periódica isolada no conjunto de todas as soluções periódicas do sistema.

A noção de ciclo limite surgiu pela primeira vez nos estudos de equações diferenciais no plano realizados por *Poincaré* entre os anos de 1880 e 1890. No final da década de 20 *Van der Pol, Lienard e Andronov*, no estudo de certos fenômenos elétricos, obtiveram certas equações especiais de segunda ordem para as quais ocorriam os ciclos limites idealizados por *Poincaré*. Desde então a não existência, a existência, a unicidade e outras propriedades dos ciclos limites foram estudadas extensivamente por matemáticos, físicos, químicos, biólogos, e economistas.

Um dos métodos para se estudar problemas de existência e unicidade de ciclos limites no plano é a análise da aplicação de primeiro retorno de *Poincaré*, definida numa seção tranversal ao fluxo. Infelizmente, tal análise em geral não é muito simples.

Em 1900, em Paris, durante o II Congresso Internacional de Matemáticos, D. Hilbert elaborou uma lista com 23 temas de pesquisa para o próximo século. Nenhum dos problemas havia tido solução até então, e varios deles acabaram se tornando muito influentes na matemática do século XX. Desta lista somente dois permanecem aberto. Um é a conjectura de Riemann e o outro é o 16° problema de Hilbert.

Durante o século XX e estes 12 primeiros anos do século XXI a pesquisa sobre ciclos limites tem sido um dos grandes objetivos da *Teoria Qualitativa de Sistemas Dinâmicos*. Porém muitas perguntas continuam sem respostas.

Considere um sistema diferencial planar

$$\dot{x} = P(x, y)
\dot{y} = Q(x, y),$$
(1)

onde P e Q são polinômios reais nas variáveis x e y e o máximo entre os graus de P e Q é n. O que podemos dizer sobre o número e a configuração dos ciclos limites do sistema (1)?

- É finito seu número de ciclos limites?
- Existe uma cota superior para o número de ciclos limites dependendo somente de n?

Embora *J. Écalle* e *Yu. Ilyashenko* tenham demonstrado que o número de ciclos limites em tais sistemas é finito, suas demonstrações não são muito acessíveis. Nem mesmo foi provada a existência de uma cota superior para campos quadráticos. Suspeita-se que essa cota seja 4 e a configuração do tipo (3,1).

Devido a dificuldade de se resolver o 16° Problema de Hilbert como fora proposto, vários novos enunciados foram surgindo para o problema. Um exemplo é o estudo do número máximo de ciclos limites que bifurcam de um centro, conhecida como versão fraca do 16° Problema de Hilbert.

Um método conhecido na literatura para o estudo das órbitas periódicas é o método Averaging. Resumidamente, a Teoria de Averaging também fornece condições suficientes para a existência de ciclos limites sobre certas hipóteses.

Metodologia

Os estudos teóricos foram realizados através das referências bibliográficas tendo em vista os temas citados no resumo. Além disso, foram realizados reuniões, apresentações e discussões semanalmente com a orientadora para remover as possíveis dúvidas do orientando bem como discutir os resultados e aplicações do método de *Averaging* comparando os resultados de acordo com os obtidos por Jaume Llibre, Ana Cristina Mereu e Marco Antonio Teixeira em [3]

Índice

Resumo Palavras-chave Objetivos		ii	
		iii iv	
			In
1	Aspectos Gerais da Teoria Qualitativa das Equações Diferenciais		1
	1.1	Introdução	1
	1.2	Teorema do Ponto Fixo e Teorema de Picard	4
	1.3	Campos Vetoriais e Fluxos	9
	1.4	Retrato de fase de um campo vetorial	11
	1.5	Equivalência e conjugação de campos vetoriais	13
	1.6	Teorema do Fluxo Tubular	14
	1.7	A transformação de Poincaré	16
	1.8	Ciclos Limites no plano	17
	1.9	O Teorema de Poincaré - Bendixson	18
2	O Método de Averaging		21
	2.1	Introdução	21
	2.2	O Teorema de Averaging	22
	2.3	Equação de Lienard	24
3	Cor	nclusão	29

Capítulo 1

1 Aspectos Gerais da Teoria Qualitativa das Equações Diferenciais

1.1 Introdução

Seja Ω um subconjunto do espaço $\mathbb{R} \times \mathbb{E}$, onde \mathbb{R} é a reta real e $\mathbb{E} = \mathbb{R}^n$ é um espaço euclidiano de dimensão n. Sejam $f:\Omega \to \mathbb{E}$ uma aplicação contínua e I um intervalo não degenerado. A função diferenciável $\varphi:I \to \mathbb{E}$ é uma solução da equação

$$\frac{dx}{dt} = f(t, x) \tag{2}$$

no intervalo I quando $\{(t, \varphi(t)); t \in I\}$ está contido em Ω e $\frac{d\varphi}{dt}(t) = f(t, \varphi(t))$ para todo $t \in I$.

Sejam $f_i:\Omega\to\mathbb{R},\ i=1,....,n$ as componentes de $f;\ \varphi=(\varphi_1,...,\varphi_n),$ com $\varphi_i:I\to\mathbb{R},$ será solução da equação (2) somente se cada φ_i é diferenciável no intervalo I, $(t,\varphi_1(t),...,\varphi_n(t))\in\Omega$ para todo $t\in I$ e

$$\frac{d\varphi_1}{dt} = f_1(t, \varphi_1(t), \dots, \varphi_n(t)),$$

$$\frac{d\varphi_2}{dt} = f_2(t, \varphi_1(t), \dots, \varphi_n(t)),$$

$$\vdots$$

$$\frac{d\varphi_n}{dt} = f_n(t, \varphi_1(t), \dots, \varphi_n(t)),$$

para todo $t \in I$.

Definição 1.1. Seja Ω um aberto contido em $I \times \mathbb{E}$, onde I é um intervalo da reta não degenerado e \mathbb{E} um espaço euclidiano n-dimensional. Seja $f:\Omega \to \mathbb{E}$ um aplicação contínua. Fixado o par (t_0, x_0) em Ω , chamado de valor inicial para a equação diferencial ordinária dada por f, chamamos de problema de Cauchy associado a f com valor inicial (t_0, x_0) o problema definido por

$$\frac{dx}{dt} = f(t, x), \qquad x(t_0) = x_0.$$

Neste caso, a aplicação $\varphi: I \to \mathbb{E}$ é uma solução do problema de Cauchy dado por f, com valor inicial (t_0, x_0) , se φ é solução da EDO dada por f e se $\varphi(t_0) = x_0$.

O problema de Cauchy ou Problema de Valor Inicial indica que sob as condições de que se $f \in \frac{\partial f}{\partial y}$ sejam contínuas no subconjunto Ω , então x' = f(t,x), $x(t_0) = x_0$ possui uma única solução no intervalo que contém t_0 .

Exemplo: Resolver o problema de Cauchy

$$y' = 2t(1+y), y(0) = 0.$$

Primeiramente, iremos verificar que existe solução e posteriormente mostrar que tal solução é única dada a condição inicial. Se $y = \varphi(t)$ temos a integral

$$\phi(t) = \int_0^t 2s[1 + \phi(s)]ds,$$

que devido a condição inicial, $\varphi_0(t) = 0$, obtemos

$$\varphi_1(t) = \int_0^t 2s[1 + \varphi_0(s)]ds = \int_0^t 2sds = t^2.$$

Analogamente, temos

$$\varphi_2(t) = \int_0^t 2s[1 + \varphi_1(s)]ds = \int_0^t 2s[1 + s^2] = t^2 + \frac{t^4}{2}ds.$$

Sucessivamente, observamos que

$$\varphi_n(t) = t^2 + \frac{t^4}{2!} + \frac{t^6}{3!} + \dots + \frac{t^2n}{n!}.$$

Assim para n=1 a expressão é verdadeira. Supomos que para n=k a expressão seja válida emprovemos para n=k+1.

$$\varphi_{k+1}(t) = \int_0^t 2s[1 + \varphi_k(s)]ds = \int_0^t 2s[1 + s^2 + \frac{s^4}{2!} + \dots + \frac{s^2k}{k!}]ds.$$

Portanto,

$$\varphi_{k+1}(t) = t^2 + \frac{t^4}{2!} + \frac{t^6}{3!} + \dots + \frac{t^{2k+2}}{(k+1)!}$$

Observe que a expressão acima é caracterizada pela série $\sum_{k=1}^{\infty} \frac{t^2 k}{k!}$ conhecida como uma série de Taylor, o que nos garante que para todo t no intervalo a solução $\varphi(t) = \sum_{k=1}^{\infty} \frac{t^2 k}{k!}$ pode ser diferenciada e integrada.

Se a série convergir, então $\varphi(t)$ é solução do problema de Cauchy. Pelo teste da razão vemos que para cada t

$$\left|\frac{t^{2k+2}}{(k+1)!}\frac{k!}{t^{2k}}\right| = \frac{t^2}{(k+1)} \to 0 \text{ quando } k \to \infty,$$

ou seja, $\varphi(t)$ é uma solução do problema de Cauchy.

Para verificar a unicidade, vamos supor que existam duas soluções φ e ϕ para o problema de Cauchy. Como ambas são soluções, subtraimos utilizando a forma de integral, ou seja

$$\varphi(t) - \phi(t) = \int_0^t 2s[\varphi(s) - \phi(s)]ds.$$

Dessa forma, o valor absoluto para t > 0

$$|\varphi(s) - \phi(s)| = \left| \int_0^t 2s [\varphi(s) - \phi(s)] ds \right|$$

$$\leq \int_0^t 2s |\varphi(s) - \phi(s)| ds.$$

Tomando o intervalo $0 \le t \le A/2$ com A arbitrário, temos que $2t \le A$, então

$$|\varphi(s) - \phi(s)| \le A \int_0^t |\varphi(s) - \phi(s)| \, ds. \tag{3}$$

Podemos definir uma função U sendo

$$U(t) = \int_0^t |\varphi(s) - \phi(s)| \, ds.$$

Da expressão acima observamos que U(0)=0 e $U(t)\geq 0$ para $t\leq 0$. Além disso, U é diferenciável e sua derivada é $U'=|\varphi(s)-\phi(s)|$. Portanto, de (3) temos

$$U'(t) - AU(t) \ge 0. \tag{4}$$

Agora, multiplicaremos por e^{-At} para obtermos a derivada de (4), assim

$$[e^{-At}U(t)]' \le 0.$$

Integrando, obtemos que $e^{-At}U(t) \leq 0$ concluindo que $U(t) \leq 0$ para todo $t \geq 0$. Observamos que $U(t) \geq 0$ para $t \geq 0$. Consequentemente U(t) = 0 para todo $t \geq 0$. Dessa forma U'(t) = 0 o que implicaria que $\varphi(t) = \varphi(t)$ contradizendo a hipótese. Dessa forma mostramos a unicidade da solução.

Outro caso interessante é observado no problema de Cauchy,

$$x' = \alpha x - \beta y,$$

$$y' = \beta x + \alpha y,$$

$$x(t_0) = x_0, y(t_0) = y_0.$$

Temos um caso homogêneo de uma equação linear complexa com coeficientes constantes onde ilustraremos as possibilidades para diferentes valores de α e β .

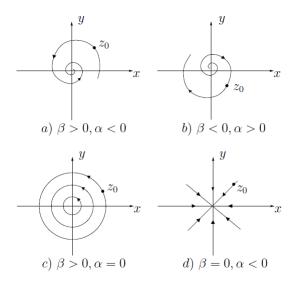


Figura 1: Possibilidades para diferentes valores de α e β

1.2 Teorema do Ponto Fixo e Teorema de Picard

Para se demonstrar a unicidade e existência de soluções é usual a utilização do Teorema de Picard, que utiliza o método de aproximações sucessivas para a demonstração, juntamente com o resultado do lema da contração ou teorema do ponto fixo garantindo a unicidade da solução. Antes disso, definiremos o que é uma aplicação *Lipschitiziana*.

Definição 1.2. Uma aplicação $f: \Omega \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ chama-se *Lipschitziana* em Ω em relação à segunda variável se existe uma costante K tal que:

$$|f(t,x) - f(t,y)| \le K|x - y|$$

para todos $(t, x), (t, y) \in \Omega$; K chama-se constante de Lipschitz de f.

Dizemos que a aplicação f é localmente lipschitziana em Ω se para todo (t_0, x_0) existe uma vizinhança $V = V(t_0, x_0)$ tal que $f|_V$ é lipschitziana em V.

Teorema 1.3 (Teorema do Ponto Fixo). Sejam (X,d) um espaço métrico completo $e F : X \to X$ uma contração, isto é $d(F(x),F(y)) \le Kd(x,y)$ com $0 \le k < 1$. Então, F possui um único ponto fixo p, por F, isto é F(p) = p. Mais ainda, p é um atrator de F, ou seja, $F^n(x) \to p$ quando $n \to \infty$ para todo $x \in X$ e $F^n(x)$ é definido por $F(F^{n-1}(x))$.

Demonstração: Demonstraremos primeiro a unicidade do ponto fixo. Sejam p e p_1 dois pontos fixos. Então

$$d(p, p_1) = d(F(p), F(p_1)) \le Kd(p_1, p).$$

Como $0 \le K < 1$, então $d(p, p_1) = 0$. Logo $p = p_1$, o que garante a unicidade.

Sejam $x \in X$ e $(x_n)_{n \in \mathbb{N}} = F^n(x)$, mostraremos que a sequência $(x_n)_{n \in \mathbb{N}}$ é uma sequência de Cauchy. Por indução, mostraremos que $d(x_n, x_{n+1}) \leq K^n d(x_0, x_1)$ é válido para todo $n \in \mathbb{N}$.

Para n=0 a desigualdade é trivialmente verdadeira pois

$$d(x_0, x_1) \le d(x_0, x_1).$$

Vamos supor agora que a desigualdade seja verdadeira para n e então mostraremos que é válida para n+1. Como F é uma contração, segue-se que

$$d(x_{n+1},x_{n+2})=d(F^{n+1}(x),F^{n+2}(x))=d(F(F^{n}(x)),F(F^{n+1}(x)))=d(F(x_{n}),F(x_{n+1}))\leq d(F^{n+1}(x),F^{n+2}(x))=d(F^{n+1}(x),F^{n+2}(x),F^{n+2}(x))=d(F^{n+1}(x),F^{n+2}(x),F^{n+2}(x))=d(F^{n+1}(x),F^{n+2}(x),F^{n+2}(x))=d(F^{n+1}(x),F^{n+2}(x),F^{n+2}(x),F^{n+2}(x))=d(F^{n+1}(x),F^{n+2}(x),F^{n+2}(x),F^{n+2}(x))=d(F^{n+1}(x),F^{n+2$$

$$\leq Kd(x_n, x_{n+1}) \leq K^{n+1}d(x_0, x_1),$$

logo, por indução, $d(x_n, x_{n+1}) \leq K^n d(x_0, x_1)$ para todo $n \in \mathbb{N}$.

Sejam $n, p \in \mathbb{N}$. Pela desigualdade triângular obtemos

$$d(x_n, x_{n+p}) \le d(x_n, x_{n+1}) + \dots + d(x_{n+p-1}, x_{n+p}).$$

Pela hipótese de indução, temos

$$d(x_n, x_{n+1}) + \dots + d(x_{n+p-1}, x_{n+p}) \le K^n d(x_0, x_1) + K^{n+1} d(x_0, x_1) + \dots + K^{n+p} d(x_0, x_1),$$
ou seja,

$$d(x_n, x_{n+p}) \leq K^n d(x_0, x_1) + \dots + K^{n+p-1} d(x_0, x_1) \leq K^n (1 + \dots + k^{p-1}) d(x_0, x_1)$$

$$\leq k^n \frac{1 - K^{p-1}}{1 - k} d(x_0, x_1) = \frac{K^n}{1 - K} d(x_0, x_1) - \frac{K^{p-1}}{1 - K} d(x_0, x_1).$$

portanto,

$$d(x_n, x_{n+p}) \le \frac{K^n}{1 - K} d(x_0, x_1).$$

Como $0 \le K < 1$ observamos que quando $n \to \infty$ temos que $K^n \to 0$, logo $d(x_n, x_m) \to 0$ a partir de um $n, m \ge n_0$ com $n, m \in \mathbb{N}$ o que mostra que a sequência $(x_n)_{n \in \mathbb{N}}$ é de Cauchy, logo convergente. Provemos que $\lim x_n = p$ é ponto fixo de F. De fato:

$$F(p) = F(\lim x_n) = \lim F(x_n) = \lim x_{n+1} = p.$$

Corolário 1.4. Seja X um espaço métrico completo. Se $F: X \to X$ é contínua e, para algum $m \in \mathbb{N}$, F^m é uma contração, então existe um único ponto p fixo por F. Mais ainda, p é um atrator de F.

Demonstração: Seja p o ponto fixo atrator de F^m dado pelo Lema da Contração. Seja n=mk+l, com $0 \le l < m$. Dado $x \in X$, F^l é um ponto de X. Como p é atrator de F^m , temos $[F^m]^k(F^l(x)) \to p$, quando $k \to \infty$. Como $F^n(x) = [F^m]^k(F^l(x))$, segue que $F^n(x) \to \infty$ quando $k \to \infty$. Logo, p é ponto atrator de F. Além disso, p é ponto fixo. De fato,

$$p = \lim_{n \to \infty} F^n(F(p)) = \lim_{n \to \infty} F^{n+1}(p) = \lim_{n \to \infty} F(F^n(p)) = F(\lim_{n \to \infty} F^n(p)) = F(p).$$

Teorema 1.5 (Teorema de Picard). Se $F: D \to D$ é contínua e Lipschitiziana na segunda variável de $D = \mathbb{R} \times \mathbb{R}^n$, dados $(t_0, y_0) \in D$ existe uma única solução $y = \varphi(t)$ satisfazendo

$$y' = F(t, \varphi(t))$$

$$y(t_0) = y_0.$$

A solução existe em qualquer intervalo I não degenerado onde $t_0 \in I$ com $(t, \varphi(t)) \in D$ para todo $t \in I$ com φ contínua.

Demonstração: Inicialmente, tomemos a, b > 0 onde $R : \{(t, y) : |t - t_0| \le a, |y - y_0| \le b\}$ esteja contido em D. Como R é compacto (limitado e fechado), então existe m > 0 tal que

$$||F(t,y)|| \le m, \quad \forall (t,y) \in R.$$

Se F é lipschitiziana, então seja k > 0 a constante de Lipschitiz no conjunto R, isto é,

$$||F(t,y_1) - F(t,y_2)|| \le K||y_1 - y_2||, \quad \forall (t,y_1), (t,y_2) \in R.$$

Tomando $d = min \left\{ a, \frac{b}{m} \right\}$ e o intervalo $I = [t_0 - d, t_0 + d]$, iremos construir uma sequência de funções $(y_n)_{n \in \mathbb{N}}$ onde $y_n : I \to \mathbb{R}^n$ da seguinte forma,

$$y_0(t) = y_0,$$

$$y_1(t) = y_0 + \int_{t_0}^t F(s, y_0(s)) ds,$$

$$y_2(t) = y_0 + \int_{t_0}^t F(s, y_1(s)) ds,$$

$$\vdots$$

$$y_n(t) = y_0 + \int_{t_0}^t F(s, y_{n-1}(s)) ds.$$

As funções são contínuas no intervalo I e satisfazem

$$||y_n(t) - y_0|| \le b \ \forall t \in I, \ \forall n \ge 0,$$

 $||y_n(t) - y_{n-1}(t)|| \le \frac{m}{k} \frac{(kd)^n}{n!} \ \forall n \ge 1.$

Mostraremos por indução que as condições acima são válidas. Para n=1 temos

$$||y_1(t) - y_0|| \le \int_{t_0}^t ||F(s, y_0(s))|| ds \le m(t - t_0) \le md \le b.$$

Vamos supor agora que as condições são válidas para n e vamos verificar se vale para n+1.

$$||y_{n+1}(t) - y_n(t)|| \le \int_{t_0}^t ||F(s, y_n(s))|| ds - \int_{t_0}^t ||F(s, y_{n-1}(s))|| ds.$$

Como F é Lipschitiziana, obtemos

$$||y_{n+1}(t) - y_n(t)|| \le \int_{t_0}^t ||F(s, y_n(s))|| ds - \int_{t_0}^t ||F(s, y_{n-1}(s))|| ds \le K \int_{t_0}^t ||y_n(s) - y_{n-1}(s)|| ds$$

$$\le \frac{m}{k} \frac{k^{n+1}}{n!} \int_{t_0}^t |s - t_0|^n ds \le \frac{m}{k} \frac{(k|t - t_0|)^{n+1}}{n!(n+1)!} \le \frac{m}{k} \frac{(k|t - t_0)^{n+1}}{(n+1)!}.$$

Portanto

$$||y_n(t) - y_{n-1}(t)|| \le \frac{m}{k} \frac{(kd^n)}{n!}, \forall n \in \mathbb{N}.$$

Concluimos então que as condições são válidas para todo $n \in \mathbb{N}$. Assim sendo, temos que verificar agora se a sequência $(y_n)_{n\in\mathbb{N}}$ converge. Podemos escrever $y_n(t)$ em forma de série

$$y_n(t) = y_0 + [y_1(t) - y_0(t)] + \dots + [y_n(t) - y_{n-1}(t)].$$
 (5)

Como (5) é uma série de funções, podemos compará-la com a série

$$\sum_{n=1}^{\infty} \frac{m}{k} \frac{(k|t-t_0|)^n}{n!} \tag{6}$$

para verificar sua convergência.

Dessa forma, como a série (6) converge, utilizando o critério de convergência de Weierstress, verificamos que a série (5) converge uniformemente, ou seja, para uma função contínua y(t) temos que $y_n(t) \to y(t)$ que justamente é a solução do problema de valor inicial dado.

Para a unicidade, a série $\sum_{n=1}^{\infty} \frac{(k|t-t_0|)^n}{n!}$ é convergente e é do tipo de soma infinita de e^n , consequentemente $S_n = \frac{1}{1-x}$ para |x| < 1, $\log \sum_{n=1}^{\infty} \frac{m}{k} \frac{(k|t-t_0|)^n}{n!} \le 1$. Como F é contínua e lipschitiziana, y_n é uma contração em D pois $0 \le k < 1$. Pelo Teorema do Ponto Fixo, existe uma única solução y(t).

1.3 Campos Vetoriais e Fluxos

O sistema de equações diferenciais

$$x'_1 = X_1(x_1, ..., x_n),$$

 $x'_2 = X_2(x_1, ..., x_n),$
 \vdots
 $x'_n = X_n(x_1, ..., x_n),$

é dito autônomo, quando as funções X_i independem de t. Exemplo:

$$x' = f(x, y),$$

$$y' = g(x, y).$$

Definição 1.6. Um campo vetorial de classe C^k com $1 \le k \le \infty$ é uma aplicação $X : \Omega \to \mathbb{R}^n$ também de classe C^k . Associamos a esse campo a equação diferencial

$$x' = X(x). (7)$$

São soluções de (7) as aplicações $\varphi: I \to \Omega$, tais que, $\varphi'(t) = X(\varphi(t)), \forall t \in I$. Tais soluções são chamadas curvas integrais ou trajetórias.

Definição 1.7. Um ponto x é dito ponto singular ou ponto de equilíbrio do campo X se X(x) = 0 e é chamado ponto regular de X se $X(x) \neq 0$.

Observe que se x é um ponto singular, então $\varphi(t)=x, \ \forall t\in I$ e se $\varphi(t)=x$ então $\varphi'(t)=0=X(\phi(t))=X(x)=0.$ Logo, por definição, x é ponto singular. Uma curva integral chama-se máxima se para toda curva $\psi:J\to\Omega$, tal que $I\subseteq J$ e $\varphi=\psi|I$ então I=J, por sua vez $\varphi=\psi$. O intervalo I é dito intervalo máximo.

Utilizaremos três resultados para o estudo do comportamento das equações diferenciais autônomos, são eles:

- (a) (Existência e unicidade de soluções máxima). Para cada $x \in \Omega$ existe um intervalo aberto I_x , onde está definida a única solução máxima φ_x de tal modo que $\varphi(0) = x$.
- (b) (Propriedade de grupo). Se $y = \varphi_x(s)$ e $s \in I_x$, então $I_y = I_x s = \{r s; r \in I_x\}$, $\varphi_y(0) = y$ e $\varphi_y(t) = \varphi_x(t+s), \forall t \in I_y$.

(c) (Diferenciabilidade em relação às condições iniciais). O conjunto $D = \{(t, x); x \in \Omega, t \in I_x\}$ é aberto em \mathbb{R}^{n+1} e a aplicação $\varphi : D \to \mathbb{R}^n$ dada por $\varphi(t, x) = \varphi_x(t)$ é de classe C^k . Além disso φ satisfaz à equação

$$D_1D_2\varphi(t,x) = DX(\varphi(t,x)).D_2\varphi(t,x), D_2\varphi(t,x)|_{t=0} = E,$$

para todo $(t, x) \in D$. Aqui E denota a identidade de \mathbb{R}^n .

Definição 1.8. A aplicação $\varphi: D \to \Omega$ é chamada de *fluxo gerado* pelo campo X.

Observe que o fluxo gerado satisfaz as condições da definição de Fluxo, isto é, $\varphi(0,x) = x$ e $\varphi(t+s,x) = \varphi(t,\varphi(s,x))$.

Posteriormente utilizaremos o resultado dos lemas apresentados na sequência para o estudo de retrato de fase de um campo vetorial. Seguem os lemas:

Lema 1.9. Seja X um campo vetorial de classe C^k , $k \geq 1$ em $\Omega \subseteq \mathbb{R}^n$. Se $x \in \Omega$ e $I_x = (\omega_-(x), \omega_+(x))$ então $\varphi_x(t) \to \partial \Omega$ quando $t \to \omega_+(x)$ ou $t \to \omega_-(x)$, ou seja, para todo compacto $K \subseteq \Omega$, existe $\epsilon = \epsilon(K) > 0$ tal que se $t \in [\omega_+(x) - \epsilon, \omega_+(x)]$, então $\varphi_x(t) \notin K$

Demonstração: Suponhamos que exista um compacto $K \subseteq \Omega$ e uma sequência $t_n \to \omega_+(x) < \infty$ tal que $\varphi_x(t_n) \in K$, para todo n. Então, existe uma subsquência, denotada por $\varphi_x(t_k)$, tal que $\varphi_x(t_k)$ converge para um ponto $x_0 \in K$. Agora, tomemos b > 0 e $\alpha > 0$, tais que $B_b \times I_\alpha \subseteq D$, sendo $D = \{(t,x) : x \in \Omega, t \in I_x\}$, onde $B_b = \{y \in \mathbb{R}^n; |y - x_0| \le b\} \subseteq \Omega$ e $I_\alpha = \{t \in \mathbb{R}; |t| \le \alpha\}$. D é aberto pela definição 1.4 (c). Além disso, por (b), $\varphi_x(t_k + s)$ está definido para $s < \alpha$ e coincide com $\varphi_y(s)$ para k suficientemente grande, onde $y = \varphi_x(t_k)$. Decorrendo que $t_k + s > \omega_+(x)$, o que é uma contradição.

Lema 1.10. Seja $X : \mathbb{R}^n \to \mathbb{R}^n$ um campo vetorial tal que $|X(x)| \leq C$ para todo $x \in \mathbb{R}^n$. $Ent\tilde{ao}\ I_x = \mathbb{R}\ para\ todo\ x \in \mathbb{R}^n$.

Demonstração: Para esta demonstração, mostraremos que $\omega_+(x) = \infty$. Suponha por absurdo que $\omega_+(x) < \infty$ para algum $x \in \mathbb{R}^n$. Seja t > 0, sendo assim

$$|\varphi_x(t) - \varphi_x(0)| = \left| \int_t^0 \frac{d}{dt} (\varphi(s, x) dx \right| = \left| \int_t^0 X(\varphi(s, x)) ds \right| \le ct \le c(\omega_+(x)).$$

Assim, $\forall t \in [0, \omega_+(x)], \varphi_x(t)$ é uma bola fechada de centro $x = \varphi_x(0)$ e raio $\omega_+(x)$ contradizendo o Lema1.9.

Lema 1.11. Se φ_x é uma solução regular de (7) definida no intervalo máximo I_x e $\varphi_x(t_1) = \varphi(t_2)$ para $t_1 \neq t_2$, então $I_x = \mathbb{R}$, $\varphi_x(t+c) = \varphi_x(t)$, para todo t, onde $c = t_2 - t_1$.

Demonstração: Definimos a aplicação $\psi: [t_2, t_2 + c] \to \mathbb{R}^n$ onde $\psi(t) = \varphi_x(t - c)$. Dessa forma temos $\psi'(t) = \varphi_x'(t-c) = X(\varphi_x(t-c)) = X(\psi(t))$ e $\psi(t_2) = \varphi_x(t_2 - t_2 + t_1) = \varphi_x(t_1) = \varphi_x(t_2)$. Pela unicidade de soluções, tem-se $\varphi_x(t) = \varphi_x(t+c)$ com $[t_2, t_2 + c] \in I_x$ para todo $t \in \mathbb{R}$. Obtemos então $I_x = \mathbb{R}$.

1.4 Retrato de fase de um campo vetorial

A imagem da curva integral de X pelo ponto p definida como $\gamma_p = \{\varphi(t, p); t \in I_p\}$ é chamada *órbita de X pelo ponto p*. Duas órbitas ou são iguais ou são disjuntas, ou seja, Ω é decomposta numa união disjunta de curvas diferenciáveis onde cada curva pode ser:

- (a) imagem biunívuca de um intervalo de \mathbb{R} ,
- (b) um ponto, ou,
- (c) difeomorfa a um círculo.

No caso (b), $p = \gamma_p$ a órbita chama-se ponto singular, no caso (c) a órbita chama-se fechada ou periódica.

Um retrato de fase de um campo X é um conjunto aberto Ω contendo a decomposição das órbitas de X. Essas órbitas são orientadas no sentido das curvas integrais de campo X.

Exemplo: Um campo X de classe C^k , com $k \ge 1$, em \mathbb{R} , onde X possui um número finito de pontos singulares. Sejam $a_1 < a_2 < \cdots < a_n$ e $a_0 = -\infty$ e $a_{n+1} = \infty$. Na Figura 2 ilustramos o gráfico e o retrato de fase de X em \mathbb{R} .

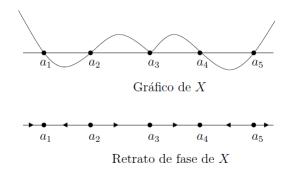


Figura 2: Gráfico e Retrato de Fase do campo X

Lema 1.12. Todo subgrupo aditivo $K \neq \{0\} \in \mathbb{R}$ é da forma $K = \sigma \mathbb{Z}$, $\sigma > 0$ ou é denso $em \mathbb{R}$.

Demonstração: Como, por hipótese, $K \neq \{0\}$, então $K \cap \mathbb{R}_+ \neq 0$, onde \mathbb{R}_+ denota os reais positivos, pois existe $k \in K$, com $k \neq 0$, o que implica que k ou -k está em $K \cap \mathbb{R}_+$. Seja $\sigma = \inf[K \cap \mathbb{R}_+]$. Se $\sigma > 0$, $K = \sigma \mathbb{Z}$, pois se $k \in K - \sigma \mathbb{Z}$, existe um único $c \in \mathbb{Z}$, tal que $c\tau < k < (c+1)\sigma$ e, portanto, $0 < k - c\sigma < \sigma$ e $k - c\sigma \in K \cap \mathbb{R}_+$, o que contraria o fato de $\sigma = \inf[K \cap \mathbb{R}_+]$. Se $\sigma = 0$, dado $\epsilon > 0$ e $t \in \mathbb{R}$, existe $k \in K$ tal que $|k - t| < \epsilon$, o que implica que K é denso em \mathbb{R} .

Teorema 1.13. Se φ_x é uma solução máxima de x' = X(x) em I_x , então verifica-se uma única das seguintes alternativas:

- (a) $\varphi_x \notin injetiva$;
- (b) $I_x = \mathbb{R} \ e \ \varphi \ \acute{e} \ constante \ (\varphi(t) = p, \ \forall t \in I_x);$
- (c) $I_x = \mathbb{R} \ e \ \varphi_x \ \'e \ peri\'odica.$

Demonstração: Se φ_x não é injetiva então $\varphi_x(t_1) = \varphi_x(t_2)$ para algum $t_1 \neq t_2$. Pelo Lema 1.11, $I_x = \mathbb{R}$, $\varphi_x(t+c) = \varphi(t)$ para todo $t \in \mathbb{R}$ com $c = t_2 - t_1$ e φ_x é uma solução periódica. Para continuar a demonstração, precisamos provar que o conjunto

$$K = \{c \in \mathbb{R} : \varphi(t+c) = \varphi_x(t), \forall t \in \mathbb{R}\}\$$

é um subgrupo aditivo de \mathbb{R} pois todo subgrupo aditivo $K \neq \{0\}$ de \mathbb{R} é da forma $K = \sigma \mathbb{Z}$ onde $\delta > 0$ ou K é denso em \mathbb{R} . Basta mostrar que:

 \bullet O conjunto K é não vazio.

- O conjunto é fechado para soma.
- Todo elemento do conjunto possui inverso aditivo.

K é diferente do vazio pois $c=t_2-t_1\in K$. Tomando $a,b\in\mathbb{R}$ temos que $\varphi(t+a+b)=\varphi(t+a)=\varphi(t), \forall t\in R$. Por fim, seja $d\in\mathbb{R}$ temos $\varphi(t)=\varphi(t-d+d)=\varphi(t-d), \forall t\in\mathbb{R}$, logo $-d\in\mathbb{R}$. Por outro lado, se $C_n\in K$ é uma sequência, tal que, $C_n\to c$, então $c\in K$ pois

$$\varphi_x(t+c) = \varphi_x(t + \lim_{n \to \infty} C_n) = \varphi_x(\lim_{n \to \infty} (t+c_n)) = \lim_{n \to \infty} \varphi_x(t+c_n) = \lim_{n \to \infty} \varphi(t), \quad \forall t \in \mathbb{R}.$$

Ou seja, K é fechado e é um subgrupo aditivo de \mathbb{R} . Portanto K é denso em \mathbb{R} ou $K = \sigma \mathbb{Z}$.

1.5 Equivalência e conjugação de campos vetoriais

Para compararmos campos vetoriais e seus retratos de fase, utilizamos alguns recursos de equivalência utilizando homeomorfismo conforme as definições que seguem. Essas definições são de suma importância para o entendimento do Teorema do Fluxo Tubular onde podemos tratar de uma conjugação de um campo com determinadas condições em relação ao campo constante $Y = (1, 0, 0, 0, ..., 0) \in \mathbb{R}^n$.

Definição 1.14. Sejam X_1, X_2 campos vetorias nos abertos Ω_1, Ω_2 de \mathbb{R}^n , respectivamente. Dizemos que X_1 é topologicamente equivalente (resp. C^k -equivalente) a X_2 quando existe um hemeomorfismo (resp. um difeomorfismo de classe C^k) $h: \Omega_1 \to \Omega_2$ levando órbita de X_1 em órbita de X_2 preservando a orientação. O homeomorfismo h é dito equivalência topólogica entre X_1 e X_2 .

Definição 1.15. Sejam $\varphi_1: D_1 \to \mathbb{R}^n$ e $\varphi_2: D_2 \to \mathbb{R}^n$ os fluxos gerados pelos campos $X_1: \Omega_1 \to \mathbb{R}^n$ e $X_2: \Omega_2 \to \mathbb{R}^n$, respectivamente. Diz-se que X_1 é topologicamente conjugado (resp. C^k -conjugado) a X_2 quando existe o homeomorfismo (resp. um difeomorfismo de classe C^k) $h: \Omega_1 \to \Omega_2$ de tal modo que $h(\varphi_1(t,x)) = \varphi_2(t,h(x))$ para todo $(t,x) \in D_1$.

Lema 1.16. Sejam $X_1: \Omega_1 \to \mathbb{R}^n$ e $X_2: \Omega_2 \to \mathbb{R}^n$ campos C^k e $h: \Omega_1 \to \Omega_2$ um difeomorfismo de classe C^r . Então h é uma conjugação entre os campos X_1 e X_2 se, e somente se,

$$Dh(p)X_1(p) = X_2(h(p)), \forall p \in \Omega_1.$$
(8)

Demonstração: Sejam $\varphi_1: D_1 \to \Omega_1$ e $\varphi_2: D_2 \to \Omega_2$ os fluxos de X_1 e X_2 , respectivamente. Vamos supor que h satisfaz (8). Dado $p \in \Omega_1$, seja $\psi(t) = h(\varphi_1(t,p)), t \in I_1(p)$. Então ψ é solução do problema de Cauchy $x' = X_2(x), x(0) = h(p)$ pois

$$\psi'(t) = Dh(\varphi_1(t, p)) \cdot \frac{d}{dt} \varphi_1(t, p) = Dh(\varphi_1(t, p)) X_1(\varphi_1(t, p)) = X_2(h(\varphi_1(t, p))) = X_2(\psi(t)).$$

Portanto $h(\varphi_1(t,p) = \varphi_2(t,h(p))$. Reciprocramente, suponhamos que h seja uma C^r - conjugação. Como h é difeomorfismo, pela definição 1.8. dado $p \in \Omega_1$ temos $h(\varphi_1(t,p)) = \varphi_2(t,h(p)), t \in I_1(p)$. Derivando em relação a t com t=0 temos

$$Dh(\varphi_1(0,p)) = D\varphi_2(0,h(p)) \Rightarrow Dh(\varphi_1'(t,p)) = \varphi_2'(h(p)) \Rightarrow DhX_1(p) = X_2(h(p)).$$

O exemplo a seguir ilustra como verificar a conjugação entre campos através do Lema 1.16.

Exemplo: Tomando os campos X(x,y)=(x,-y) e $Y(x,y)=(x,-y+x^3)$ verificaremos se $h(x,y)=(x,y+\frac{x^3}{4})$ é uma conjugação. Aplicando o Lema, em termos de matrizes temos a jacobiana,

$$DhX = \begin{bmatrix} 1 & 0 \\ \frac{3x^2}{4} & 1 \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix} = \begin{bmatrix} x \\ \frac{3x^3}{4} - y \end{bmatrix}$$
 (9)

Observe que $Y(h(x,y)) = [x, -y + \frac{3x^3}{4}]$, portanto Dh(x,y)X(x,y) = Y(h(x,y)).

1.6 Teorema do Fluxo Tubular

O intuito e objetivo desse teorema é estudar o comportamente local de soluções próximas a um ponto que não seja estácionária. Se p é um ponto regular de um campo vetorial X, de classe C^k com $k \geq 1$, o teorema de Fluxo Tubular nos garante que existe um difeomorfismo de classe C^k conjugando X, em uma vizinhança de p com o campo constante $Y = (1, 0, \dots, 0)$. Dessa forma , dois campos X e Z são localmente C^k -conjugados em torno de pontos regulares.

Definição 1.17. Sejam $X:\Omega\to\mathbb{R}^n$ um campo de classe C^k com $k\geq 1$ e $\Omega\in\mathbb{R}^n$ aberto e além disso $A\subseteq\mathbb{R}^{n-1}$ um aberto. Uma aplicação diferenciável $f:A\to\Omega$ chama-se seção transversal local de X quando para todo $a\in A$, $Df(a)(\mathbb{R}^{n-1})$ e X(f(a)) geram o espaço \mathbb{R}^n . Seja $\Sigma=f(a)$ munido da topologia induzida. Se $f:A\to\Sigma$ for um homeomorfismo então Σ é uma seção transversal de X.

Teorema 1.18. (Teorema de Fluxo Tubular) Seja p um ponto não singular do campo $X: \Omega \to \mathbb{R}^n$ de classe C^k e $f: A \to \Sigma$ uma seção transversal local de X de classe C^k com f(0) = p. Então existe uma vizinhança V de p em Ω e um difeomorfismo $h: V \to (-\epsilon, \epsilon) \times B$ de classe C^k , onde $\epsilon > 0$ e B é uma bola aberta em \mathbb{R}^{n-1} de centro na origem $0 = f^{-1}(p)$ de tal forma que

- (a) $h(\Sigma \cap V) = 0 \times B$;
- (b) $h \notin uma \ C^k$ conjugação entre $X|_V$ e o campo constante $Y: (-\epsilon, \epsilon) \times B \to \mathbb{R}^n$, com $Y = (1, 0, 0, \dots, 0) \in \mathbb{R}^n$.

Demonstração: Seja $\varphi: D \to \Omega$ o fluxo do campo X. Definimos a aplicação $\psi: D_A \to U$ onde $D_A = \{(t, u): (t, f(u)) \in D\}$ de tal modo que $\psi(t, u) = \varphi(t, f(u))$, em outras palavras a aplicação ψ leva as linhas paralelas ao eixo t em curvas integrais do campo X passados t unidades de tempo. Verificaremos que ψ é um difeomorfismo local em uma vizinhança da origem. Pelo Teorema da Função Inversa (demonstrado em [5], p.115), basta mostrarmos que $D\psi(0)$ é um isomorfismo. De fato,

$$D_t \psi(0,0) = \varphi'(0,f(0)) = X(\varphi(0,p) = X(p).$$

Além disso, $D_u\psi(0,0) = \varphi'(0,f(u)) = Df(u)$, $\forall u \in A$. Portanto $D\psi(0)$ é um isomorfismo. Pelo Teorema da Função Inversa, existem $\epsilon > 0$ e uma bola $B \in \mathbb{R}^{n-1}$ com centro na origem tal que $\psi|_{(-\epsilon,\epsilon)\times B)}$ é um difeomorfismo sobre $V = \psi((-\epsilon,\epsilon)\times B)$. Definindo $h = (F|_{(-\epsilon,\epsilon)\times B})^{-1}$ e como $Y: (-\epsilon,\epsilon)\times B \to \mathbb{R}^n$ é um campo constante, verificaremos que h^{-1} conjuga os campos Y e X, pelo Lema 1.16:

$$Dh^{-1}(t, u).Y(t, u) = D\psi(t, u).(1, 0, \dots, 0) = D_1\psi(t, u)$$
$$= X(\varphi(t, f(u)) = X(\psi(t, u)) = X(h^{-1}(t, u)),$$

o que prova a conjugação.

Definição 1.19. Um ponto singular p de um campo vetorial X de classe C^k , $k \ge 1$, chama-se hiperbólico se todos autovalores de DX(p) tem parte real diferente de zero.

Teorema 1.20. Teorema de Hartman-Grobman. Sejam $X: \Omega \to \mathbb{R}^n$ um campo vetorial de classe C^1 e p um ponto singular hiperbólico. Existem vizinhanças W de p em Ω e V de 0 em \mathbb{R}^n tais que X|W é topologicamente conjugado a $DX(p)|_V$.

Em suma o Teorema de Hartman-Grobman nos diz que dado um sistema não linear e sua linearização em torno de um ponto hiperbólico, então o teorema garante a existência de um homeomorfismo que faz uma conjugação topólogica entre os dois sistemas. Dessa forma podemos estudar o comportamento qualitativo do sistema original em torno desses pontos singulares hiperbólicos.

1.7 A transformação de Poincaré

O objetivo de se utilizar a transformação de Poincaré é buscar entender o comportamento das trajetórias (soluções da EDO) por meio do comportamento de certas transformações. A transformação de Poincaré associada a uma órbita fechada γ de um campo vetorial é um difeomorfismo π que definiremos a seguir. Esta transformação descreve o comportamento do campo numa vizinhança de γ .

Seja $\gamma = \{\varphi(t,p); 0 \leq t \leq \tau_0\}$ uma órbita periódica de período τ_0 de um campo X de classe C^k , $k \geq 1$, definido em $\Delta \subset \mathbb{R}^n$. Seja Σ uma seção transversal a X em p. Em virtude da continuidade do fluxo φ de X, para todo ponto $q \in \Sigma$ próximo de p a trajetória $\varphi(t,q)$ permanece próxima a γ , com t em um intervalo compacto pré-fixado, por exemplo, $[0,2\tau_0]$. Define-se $\pi(q)$ como o primeiro ponto onde esta órbita, partindo de q, volta a interceptar novamente a seção Σ . Seja Σ_0 o domínio de π . Naturalmente $p \in \Sigma_0$ e $\pi(p) = p$. Em outras palavras, estamos observando o comportamento das trajetórias passando pelos pontos $\pi(q_i) \in \Sigma$ próximos de uma vizinhança do ponto p que respeitam a continuidade do fluxo.

Muitas propriedades do retrato de fase de X perto de γ se refletem em π e reciprocamente. Por exemplo, as órbitas periódicas de X vizinhas de γ correspondem aos pontos periódicos de π , que são pontos $q \in \Sigma_0$ para os quais $\pi^n(q) = q$ para algum inteiro $n \geq 1$. O comportamento assintótico das órbitas de X perto de γ também é descrito por π . Assim, $\lim_{n\to\infty} \pi^n(q) = p$ implica $\lim_{t\to\infty} d(\varphi(t,q),\gamma) = 0$, onde $d(\varphi(t,q),\gamma) = \inf\{|\varphi(t,q) - r|, r \in \gamma\}$.

A aplicação $\pi: \Sigma_0 \to \Sigma$ é um difeomorfismo de classe C^k sobre sua imagem. Tomando $\varphi(\tau_0, p) = p$, pelo Teorema do Fluxo Tubular, existe uma vizinhança Σ_0 de p em Σ tal que $\varphi(\tau_0, q) \in V$ para todo $q \in \Sigma_0$. Seja a aplicação $\xi: V \to \Sigma$ temos que $\pi: \Sigma_0 \to \Sigma$, onde $\pi(q) = \xi(\varphi(\tau_0, q))$. Podemos expressar π como sendo: $\pi(q) = \varphi(\tau_0 + \tau(\varphi(\tau_0, q)), q)$ onde

tal $\tau:V\to\mathbb{R}$ significa o tempo $\tau(x)$ que a órbita passando por x leva para interceptar a transversão Σ .

1.8 Ciclos Limites no plano

Definição 1.21. Seja U um aberto de \mathbb{R}^2 e $F:U\to U$ um campo vetorial de classe C^1 . Uma órbita periódica γ de F chama-se ciclo limite se existe uma vizinhança V de γ tal que γ é a unica órbita fechada de F que intercepta V.

Proposição 1.22. Existem apenas os seguintes tipos de cliclos limites:

- (a) Estável, quando $\lim_{t\to\infty} d(\varphi(t,q),\gamma) = 0$ para todo $q \in V$;
- (b) Instável, quando $\lim_{t\to-\infty} d(\varphi(t,q),\gamma) = 0$ para todo $q \in V$;
- (c) Semi-estável, quando $\lim_{t\to\infty} d(\varphi(t,q),\gamma) = 0$ para todo $q \in V \cap Ext \gamma$; $e \lim_{t\to-\infty} d(\varphi(t,q),\gamma) = 0$ para todo $q \in V \cap Int \gamma$, ou o contrário.

Demonstração: Diminuindo a vizinhança V se necessário, podemos supor que ela não contém singularidades. Sejam $p \in \gamma$ e Σ uma seção transversal a F em p. Seja $\pi: \Sigma_0 \to \Sigma$ a transformação de Poincaré. Suponhamos que Σ esteja ordenado, sendo o sentido positivo de Ext γ para Int γ . Dado $q \in \Sigma_0 \cap \text{Ext } \gamma$, temos $\pi(q) > q$ ou $\pi(q) < q$. Sem perda de generalidade, suponhamos $\pi(q) > q$. Considere a região A limitada por γ , pelo arco de trajetória $\widehat{q\pi(q)}$ e pelo segmento $\overline{q\pi(q)} \subset \Sigma_0$. A região A é homeomorfa a um anel e positivamente invariante, ou seja, dado $x \in A$, $\varphi(t,x) \in A$ para todo $t \geq 0$. Isto segue pela unicidade de soluções e pela orientação das órbitas. Além disso, $\varphi(t,x)$ intercepta Σ numa sequência estritamente monótona de pontos x_n que converge para p. Concluí-se então que $\lim_{t\to\infty} d(\varphi(t,x),\gamma) = 0$.

Se $\pi(q) < q$, considerando o campo -F, fica provado que $\lim_{t\to\infty} d(\varphi(t,x),\gamma) = 0$ para todo $x \in A$. Podemos fazer as mesmas considerações em Int γ . Basta agora combinar as possibilidades para concluir a demonstração.

Observação 1.23. Com as notações introduzidas na Proposição 1.22, temos que γ é um ciclo limite $\Leftrightarrow p$ é um ponto fixo isolado de π . Além disso,

- (a) γ é estável $\Leftrightarrow |\pi(x) p| < |x p| \ \forall x \neq p$ próximo de p;
- (b) γ é instável $\Leftrightarrow |\pi(x) p| > |x p| \ \forall x \neq p$ próximo de p;

(c) γ é semi-estável $\Leftrightarrow |\pi(x) - p| < |x - p| \ \forall x \in \Sigma \cap \text{Ext } \gamma \text{ próximo de } p, \text{ e } |\pi(x) - p| > |x - p| \ \forall x \in \Sigma \cap \text{Int } \gamma \text{ próximo de } p \text{ ou o contrário.}$

1.9 O Teorema de Poincaré - Bendixson

Definição 1.24. Seja $F: U \to \mathbb{R}^n$ um campo vetorial de classe C^k , $k \geq 1$, com U um subconjunto aberto do espaço euclidiano \mathbb{R}^n . Seja $\varphi(t) = \varphi(t,p)$ a curva integral de F passando pelo ponto p, definida no intervalo máximo $I_p = (\omega_-(p), \omega_+(p))$. Se $\omega_+(p) = \infty$, definimos os seguintes conjuntos:

$$\omega(p) = \{ q \in U, \exists \{t_n\} \text{ com } t_n \to \infty \text{ e } \varphi(t_n) \to q, \text{ quando } n \to \infty \}.$$

De forma analoga, temos para $\omega(p) = -\infty$

$$\alpha(p) = \{ q \in U, \exists \{t_n\} \text{ com } t_n \to -\infty \text{ e } \varphi(t_n) \to q, \text{ quando } n \to \infty \}.$$

Teorema 1.25. Sejam $F: U \to \mathbb{R}^n$ um campo de classe C^k , $k \ge 1$ definido em $U \subset \mathbb{R}^n$ e $\gamma^+ = \{\varphi(t,p); t \ge 0\}$ a semiórbita positiva do campo F pelo ponto p. Se $\gamma^+(p)$ está contida num subconjunto compacto $K \subset U$, então:

- (a) $\omega(p) \neq 0$ (respectivemente, $\alpha(p)$);
- (b) $\omega(p)$ é compacto, (respectivamente $\alpha(p)$);
- (c) $\omega(p)$ é invariante por F, isto é, se $q \in \omega(p)$, então a curva integral de F por q está contida em $\omega(p)$;
- (d) $\omega(p)$ é conexo, (respectivamente, $\alpha(p)$).

Demonstração: É suficiente mostrar o teorema para o conjunto ω -limite.

(a)
$$\omega(p) \neq \emptyset$$
.

Seja $t_n = n \in \mathbb{N}$. Como $\{\varphi(t_n)\}$ \subset é compacto, existe uma subsequência $\{\varphi(t_{n_k})\}$ que converge para algum ponto $q \in K$. Então, $t_{n_k} \to \infty$, quando $n_k \to \infty$ e $\varphi(t_{n_k}) \to q$. Logo, $q \in \omega(p) \neq \emptyset$.

(b) $\omega(p)$ é compacto.

Como $\omega(p) \subset \overline{\gamma^+(p)} \subset K$, basta mostrar que $\omega(p)$ é fechado. Seja $q_n \to q$, $q_n \in \omega(p)$. Vamos mostrar que $q \in \omega(p)$. De fato, para cada $q_n \in \omega(p)$, existe uma sequência $\{t_m^{(n)}\}$ tal que $t_m^{(n)} \to \infty$ e $\varphi(t_m^{(n)}, p) \to q_n$, quando $m \to \infty$.

Tomemos, para cada sequência $\{t_m^{(n)}\}$, um ponto $t_n = t_{m(n)}^{(n)} > n$ e tal que $d(\varphi(t_n, p), q_n) < \frac{1}{n}$. Pela desigualdade triangular, temos:

$$d(\varphi(t_n, p), q) \le d(\varphi(t_n, p), q_n) + d(q_n, q) \le \frac{1}{n} + d(q_n, q).$$

Segue, então, que $d(\varphi(t_n, p), q) \to 0$ quando $n \to \infty$, ou seja, $\varphi(t_n, p) \to q$. Como $t_n \to \infty$ quando $n \to \infty$, concluí-se que $q \in \omega(p)$.

(c) $\omega(p)$ é invariante por F.

Seja $q \in \omega(p)$ e seja $q_0 = \varphi(t_0, q)$. Como $q \in \omega$, existe $\varphi(t_n, p) \to q$ quando $t_n \to \infty$. Pela continuidade de φ , segue que

$$q_0 = \varphi(t_0, q) = \varphi(t_0, \lim_{n \to \infty} \varphi(t_n, p)) = \lim_{n \to \infty} \varphi(t_0, \varphi(t_n, p)) = \lim_{n \to \infty} \varphi(t_n + t_0, p).$$

Observe que a sequência $(s_n) = (t_n + t_0)$ é tal que $s_n \to \infty$ e $\varphi(s_n, p) \to q_0$ quando $n \to \infty$. Portanto, $q_0 \in \omega(p)$.

(d) $\omega(p)$ é convexo.

Suponhamos, por absurdo, que $\omega(p)$ seja não convexo. Então existem A e B fechados e não vazios tais que $A \cap B = \emptyset$ e $\omega(p) = A \cup B$. Como $A \neq \emptyset$, existe uma sequência $\{t'_n\}$ tal que $t'_n \to \infty$ e $\varphi(t'_n) \to a \in A$, quando $n \to \infty$. Analogamente, existe uma sequência $\{t''_n\}$ tal que $t''_n \to \infty$ e $\varphi(t''_n) \to b \in B$, quando $n \to \infty$. Seja d = d(A, B) > 0. Podemos construir uma sequência $\{t_n\}$, $t_n \to \infty$ quando $n \to \infty$ e tal que $d(\varphi(t_n), A) < d/2$ e $d(\varphi(t_{n+1}), A) > d/2$ para todo n ímpar.

Como a função $g(t) = d(\varphi(t), A)$, $t_n \le t \le t_{n+1}$, para todo n ímpar é contínua e $g(t_n) < d/2$ e $g(t_{n+1}) > d/2$, segue-se do Teorema do Valor Intermediário ([4]) que existe $\tilde{t_n}$, $t_n < \tilde{t_n} < t_{n+1}$ tal que

$$g(\tilde{t_n}) = d(\varphi(\tilde{t_n}), A) = d/2.$$

Desde que a sequência $\{\varphi(\tilde{t_n})\}$ está contida no compaco $Q=\{x\in U; d(x,A)=d/2\}\cap K,$ $\{\varphi(\tilde{t_n})\}$ possui uma subsequência convergente, que denotaremos por $\{\varphi(\tilde{t_k})\}$. Seja $\tilde{p}=\lim_{k\to\infty}\varphi(\tilde{t_k})$. Então $\tilde{p}\in\omega(p)$. Mas $\tilde{p}\notin A$, pois $d(\tilde{p},A)=d/2>0$; além disso, $\tilde{p}\notin B$, pois $d(\tilde{p},B)\geq d(A,B)-d(\tilde{p},A)=d/2>0$. O que mostra a contradição.

Enunciaremos agora o Teorema de Poincaré-Bendixson.

Teorema 1.26. Teorema Poincaré-Bendixson Seja $\varphi(t) = \varphi(t,p)$ uma curva integral de X, definida para todo $t \leq 0$, tal que $\gamma^+(p)$ esteja contida num compacto $K \subset \Omega$. Suponha

também que o campo X possua um número infinito de singularidade em $\omega(p)$. Temos as afirmativas.

- (a) Se $\omega(p)$ contém somente pontos regulares, então $\omega(p)$ é uma órbita periódica.
- (b) Se $\omega(p)$ contém pontos regulares e singulares, então $\omega(p)$ consiste em um conjunto de órbitas, cada uma das quais tende a um desses pontos singulares quando $t \to +\infty$
- (c) Se $\omega(p)$ não contém pontos regulares, então $\omega(p)$ é um ponto singular.

Capítulo 2

2 O Método de Averaging

Neste capítulo enunciaremos o teorema de Averaging de primeira ordem e apresentaremos uma aplicação do método para obter o número de ciclos limites de casos particulares dos resultados obtidos por Jaume Llibre, Ana Cristina Mereu e Marco Antonio Teixeira encontrados em [3].

2.1 Introdução

Em 1687, Isaac Newton apresentou a Lei da Gravitação Universal. Nesta época a ideia de que os planetas realizavam órbitas perfeitamente circulares já havia sido derrubada. Pela terceira lei de Newton, dois corpos interagem entre si influenciando a trajetória de ambos. Neste caso, a força de atração entre dois corpos já era compreendida devido a lei da gravitação universal. Com o problema de dois corpos resolvido e entendido, expandiu-se generalizando para a interação de três ou mais corpos entre sí através da força gravitacional. As equações que descreviam o comportamento de três ou mais corpos eram inviavéis de se resolver analiticamente. Devido a complexidade de se trabalhar com esse problema surgiu a necessidade de se obter aproximações das soluções utilizando séries de potências. Dessa forma, Levantaram-se questões sobre a estabilidade do sistema solar bem como preocupações sobre artefatos na trajetória da Terra e sua órbita.

O método de averaging foi construído a partir dos trabalhos de Laplace sobre estabilidade do sistema solar. Lagrange e Clairaut corroboraram também com seus trabalhos contendo vários elementos e ideias que se encontram na teoria de Averaging. Em um dos trabalhos de Clairaut continha um método de integração a qual se preocupava também com os termos da série que cresciam ilimitadamente. Laplace trouxe vários elementos do método de averaging principalmente considerando perturbações de ordem alta. Lagrange contribuiu com o que conhecemos hoje como a forma padrão, bem como considerar apenas a primeira aproximação da expansão em séries de potência do parâmetro de perturbações no averaging de primeira ordem.

Outro grande contribuidor para a teoria de Averaging foi Poincaré. Poincaré provou que é possivel descrever soluções periódicas usando séries convergentes em potências inteiras de um parâmetro ϵ onde os coeficientes são funções limitadas no tempo. Essa ideia de Poincaré foi introduzida no método e formalizada na década de trinta, onde posteriormente foi apresentado o primeiro teorema de Averaging. Essa nova ferramenta tornou-se útil no estudo de existência de ciclos limites e principalmente trouxe uma nova abordagem para tratar de problemas como o conhecido 16° problema de Hilbert.

De maneira geral o método de averaging permite relacionarmos quantitativamente soluções de sistemas autonônomos e não autônomos e assim encontrar uma cota inferior de números de ciclos limites quando perturbamos o sistema com uma parâmetro pequeno (denotado aqui como ϵ). O método permite reduzir o problema em apenas obter os zeros simples de uma função. Para isso, precisamos que a função esteja em sua forma padrão dada por:

$$f(t, x, \epsilon) = \epsilon F(t, x) + \epsilon^2 G(t, x, \epsilon).$$

2.2 O Teorema de Averaging

Seja o sistema na forma padrão

$$\begin{cases} \dot{x} = \epsilon F(t, x) + \epsilon^2 G(t, x, \epsilon), \\ x(t_0) = x_0, \end{cases}$$
 (10)

com F T-periódica na variável t. Considere o sistema autônomo

$$\begin{cases} \dot{y} = \epsilon F^{-1}(y), \\ y(t_0) = x_0, \end{cases}$$
 (11)

onde

$$F^{1}(y) = \frac{1}{T} \int_{0}^{T} F(t, y) dt.$$

Dessa forma podemos relacionar as soluções de (10) com as soluções do sistema (11). Abaixo enunciaremos o Teorema de Averaging Clássico onde a demonstração pode ser encontrada em [2] e [6].

Teorema 2.1. Considere os problemas de valor inicial de (10) e (11) com $x, y, x_0 \in D \subset \mathbb{R}^n$, $t \in [t_0, t_0 + T]$ e $\epsilon \in (0, \epsilon_0]$. Suponha que

- 1. F, G são contínuas, limitadas por uma constante M independente de $\epsilon \in [t_0, \infty] \times D$ e estão definidas.
 - 2. $G \notin lipschitiziana \ em \ x \in D$;
 - 3. $F \notin T$ -periódica em t, com T constante independente de ϵ ;
 - 4. y(t) pertence a um subconjunto interior de D no tempo escala $\frac{1}{\epsilon}$

Então, $x(t) - y(t) = \zeta(\epsilon)$ quando $\epsilon \to 0$ no tempo escala $\frac{1}{\epsilon}$, onde $\zeta(\epsilon) = \epsilon^n$ tal que, $\lim_{\epsilon \to 0} \zeta(\epsilon)$ existe. $\zeta(\epsilon)$ é chamado de função ordem.

Exemplo: Equação de Van der Pol

Considere a equação

$$\ddot{x} + x = -\epsilon(1 - x^2)y.$$

Podemos rescreve-la na forma de sistema:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\epsilon(1 - x^2)y - x. \end{cases}$$
 (12)

Fazendo a mudança de coordenadas $x = r \cos \theta$, $y = r \sin \theta$, obtemos

$$\begin{cases} \dot{r}\cos\theta - r\dot{\theta}\sin\theta = r\sin\theta \\ \dot{r}\sin\theta + r\dot{\theta}\cos\theta = -\epsilon(1 - r^2\cos^2\theta)r\sin\theta - r\cos\theta. \end{cases}$$
 (13)

Com algumas manipulações algébricas o sistema (13) pode ser escrito da seguinte forma,

$$\begin{cases} \dot{r} = -\epsilon (1 - r^2 \cos^2 \theta) r \sin^2 \theta \\ \dot{\theta} = -\epsilon (1 - r^2 \cos^2 \theta) r \sin \theta \cos \theta - 1. \end{cases}$$
 (14)

Tomando θ como variável independente obtemos

$$\frac{dr}{d\theta} = \frac{\epsilon(1 - r^2\cos^2\theta)r\sin^2\theta}{\epsilon(1 - r^2\cos^2\theta)r\sin\theta\cos\theta + 1}.$$

Pela expansão em série de Taylor, escrevemos $\frac{dr}{d\theta}$ como,

$$\dot{r} = \epsilon (1 - r^2 \cos^2 \theta) r \sin^2 \theta + \zeta(\epsilon^2).$$

Aplicando o método de averaging podemos encontrar o número de ciclos limites da equação de Van der Pol. Pelo Teorema (2.1), basta encontrar os zeros simples de

$$F(r) = \frac{1}{2\pi} \int_0^{2\pi} (1 - r^2 \cos^2 \theta) r \sin^2 \theta d\theta.$$

Calculando a integral acima, obtemos a expressão $F(r) = \frac{1}{8}\pi r(r^2 - 4)$ onde temos como raízes deste polinômio os valores de r = 0 e $r = \pm 2$. Como r > 0, a única solução válida é r = 2, concluindo assim que temos apenas um ciclo limite para equação de Van der Pol.

2.3 Equação de Lienard

Lienard analisou a seguinte equação diferencial:

$$\ddot{x} + f(x)\dot{x} + g(x) = 0$$

que ficou conhecida como equação de Lienard. Se tomarmos $f(x) = \epsilon(x^2 - 1)$ e g(x) = x obtemos a equação de Van der Pol, sendo um caso particular da equação de Lienard.

Um dos objetivos desse trabalho é estudar e aplicar o Teorema de Averaging Clássico para descobrir o número de ciclos limites que bifurcam do centro linear

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x, \end{cases}$$

quando o mesmo é pertubado pela seguinte classe de sistemas diferenciais polinomiais de Lienard

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x - \epsilon(f_n(x)y + g_m(x)), \end{cases}$$
 (15)

onde f_n e g_m são polinômios em x de grau n e m, respectivamente. Inicialmente iremos estudar o caso geral em que os polinômios citados possuem grau n e m e, em seguida, estudaremos alguns casos particulares do sistema (15) apresentando valores para n e m juntamente com alguns exemplos.

Teorema 2.2. Considere o sistema (15), onde $f_n(x)$ e $g_n(x)$ são polinômios em x de grau n e m respectivamente. Então para um $|\epsilon|$ arbitrariamente pequeno, o número máximo de

ciclos limites do sistema diferencial de Lienard acima, de acordo com a teoria de Averaging de primeira ordem é $\left[\frac{n}{2}\right]$, ou seja, o maior inteiro positivo menor ou igual a $n_{\overline{2}}$.

Demonstração: Utilizamos o Teorema (2.1) para provar esse teorema. Do sistema (15) escrevemos $f_n(x) = \sum_{i=0}^n \alpha_i x^i$ e $g_m(x) = \sum_{i=0}^m \beta_i x^i$. Utilizando coordenadas polares, $x = r \cos \theta$ e $y = r \sin \theta$, onde r > 0 e $0 \le \theta \le 2\pi$, escrevemos (15) como sendo:

$$\begin{cases} \dot{r}\cos\theta - r\dot{\theta}\sin\theta = r\sin\theta, \\ \dot{r}\sin\theta + r\dot{\theta}\cos\theta = -r\cos\theta H(r,\theta). \end{cases}$$
 (16)

Onde

$$H(r,\theta) = r \sin \theta \sum_{i=0}^{n} \alpha_i r^i \cos^i \theta + \sum_{i=0}^{m} \beta^i r^i \cos^i \theta.$$

Por meio de manipulação algébrica, o sistema (16) é escrito como

$$\begin{cases} \dot{r} = -\epsilon \sin \theta H(r, \theta), \\ \dot{\theta} = -1 - \frac{\epsilon}{r} \cos \theta H(r, \theta). \end{cases}$$
 (17)

Tomando θ como váriavel independente e utilizando a expansão em série de Taylor, temos a forma padrão

$$\frac{dr}{d\theta} = \epsilon \operatorname{sen} \theta H(r, \theta) + \zeta(\epsilon^2).$$

Pelo Teorema (2.1), obtemos

$$F(r) = \frac{1}{2\pi} \int_0^{2\pi} \sin \theta H(r, \theta) d\theta.$$

Sabendo que

$$\int_{0}^{2\pi} \cos^{2k+1} \theta \sin^{2} \theta d\theta = 0, k = 0, 1, \cdots$$
$$\int_{0}^{2\pi} \cos^{2k} \theta \sin^{2} \theta d\theta = \mu_{2k} \neq 0, k = 0, 1, \cdots$$
$$\int_{0}^{2\pi} \cos^{k} \theta \sin \theta d\theta = 0, k = 0, 1, \cdots$$

Resolvendo a integral acima, obtemos que

$$F(r) = \frac{1}{2} \sum_{i=0}^{n} \alpha_i \mu_i r^{i+1}, \ i = 2k \ \forall k \in \mathbb{N}.$$

Concluimos que o polinômio F(r) tem no máximo $\left[\frac{n}{2}\right]$ raízes positivas, consequentemente pode possuir a mesma quantidade de ciclos limite.

É interessante notar que o polinômio F(r) não depende do grau do polinômio $g_m(x)$ e de seus coeficientes β_i e sim exclusivamente de f_m como acabamos de mostrar.

Iniciaremos agora o estudo de alguns casos particulares juntamente com alguns exemplos.

Caso 1:
$$n = 4 e m = 5$$

Pelo resultado do Teorema (2.2) observamos que F(r) não depende do polinômio $g_m(x)$. Neste caso, temos que encontrar os zeros simples de

$$F(r) = \frac{1}{2\pi} \int_0^{2\pi} r \operatorname{sen}^2 \theta \sum_{i=0}^4 \alpha_i r^i \cos^i \theta d\theta.$$

Segue então que,

$$F(r) = \frac{1}{2\pi} \int_0^{2\pi} r \sin^2 \theta (\alpha_0 + r \cos \theta \alpha_1 + r^2 \cos^2 \theta \alpha_2 + r^3 \cos^3 \theta \alpha_3 + r^4 \cos^4 \alpha_4) d\theta \Rightarrow$$

$$F(r) = \frac{(8\alpha_0 r + 2\alpha_2 r^3 + \alpha_4 r^5)}{16} = \frac{r(8\alpha_0 + 2\alpha_2 r^2 + \alpha_4 r^4)}{16}.$$

Como queremos encontrar os zeros simples de F(r), note que r=0 é uma raíz do polinômio. Tomando $R=r^2$ temos

$$0 = 8\alpha_0 + 2\alpha_2 R + \alpha_4 R^2,$$

podendo possuir até duas soluções positivas R_1, R_2 . Concluimos então que F(r) pode possuir no máximo dois zeros positivos $r_1 = \sqrt{R_1}$ e $r_2 = \sqrt{R_2}$ para r > 0 e, portanto, para n = 4 obtemos no máximo 2 ciclos limites conforme esperado pelo Teorema 2.2.

Exemplo 2.3. Considere o sistema:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x - \epsilon [(1 - 3x^2 + x^3 + x^4)y + 3x^2] \end{cases}$$

Como já demonstrado, para n=4 temos o polinômio

$$F(r) = \frac{r(8a_0 + 2a_2r^2 + a_4r^4)}{16},$$

neste caso temos $a_0=1,\,a_2=-3$ e $a_4=1.$ Agora basta obter as raízes da equação

$$0 = 8 - 6r^2 + r^4.$$

Substituindo $R = r^2$ obtemos

$$0 = 8 - 6R + R,$$

tendo como raízes $r=\pm\sqrt{2}$ e $r=\pm1$. Como r>0 temos duas raízes possiveis. Portanto o sistema possui dois ciclos limites.

Caso 2: n = 6

Novamente, utilizando o Teorema (2.1), temos o polinômio

$$F(r) = \frac{1}{2\pi} \int_0^{2\pi} r \operatorname{sen}^2 \theta \sum_{i=0}^6 \alpha_i r^i \cos^i \theta d\theta,$$

onde

$$F(r) = \frac{1}{2\pi} \int_0^{2\pi} r \sin^2 \theta \left(\alpha_0 + r \cos \theta \alpha_1 + r^2 \cos^2 \theta \alpha_2 + r^3 \cos^3 \theta \alpha_3 + r^4 \cos^4 \theta \alpha_4 + r^5 \cos^5 \theta \alpha_5 + r^6 \cos^6 \theta \alpha_6 \right) d\theta.$$

Resolvendo a integral, obtemos

$$F(r) = \frac{r(64\alpha_0 + 16\alpha_2 r^2 + 8\alpha_4 r^4 + 5\alpha_6 r^6)}{128}.$$

Substituindo $R=r^2$ e igualando a zero para obtermos as raízes do polinômio,

$$0 = 64\alpha_0 + 16\alpha_2 R + 8\alpha_4 R^2 + 5\alpha_6 R^3.$$

A equação acima possui três raízes positivas e podendo ter no máximo três ciclos limites.

Exemplo 2.4. Considere o sistema:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x - \epsilon \left[\left(-\frac{1}{8} + \frac{7}{8}x^2 + \frac{1}{7}x^3 - \frac{7}{8}x^4 + \frac{1}{5}x^6 \right) y \right]. \end{cases}$$

Onde $\alpha_0 = -\frac{1}{8}$, $\alpha_1 = 0$, $\alpha_2 = \frac{7}{8}$, $\alpha_3 = \frac{1}{7}$, $\alpha_4 = -\frac{7}{8}$, $\alpha_5 = 0$ e $\alpha_6 = \frac{1}{5}$. Temos o polinômio

$$F(r) = \frac{r(-8 + 14r^2 - 7r^4 + r^6)}{128}.$$

Tomando $R=r^2$ e igualando a zero, obtemos

$$0 = r^3 - 7r^2 + 14r - 8,$$

onde possui raízes $r=\pm 1,\ r=\pm \sqrt{2},\ r=\pm 2.$ Como r>0 temos exatamente três raizes positivas, portanto a sistema acima possui no máximo três ciclos limites

3 Conclusão

A primeira parte dos estudos, focada no estudo teórico, foi de fundamental importância e serviu como base para o estudo do Método de Averaging. No desenvolvimento do estudo da Teoria de Averaging viu-se como uma excelente ferramenta para obter o número máximos de ciclos limites em sistemas planares pertubados por uma classe específica de sistemas diferenciais polinomiais de Lienard. Concluimos que o número máximo nessas condições pode ser $\left[\frac{n}{2}\right]$ como mostrado no Teorema 2.2. Além disso, esse trabalho serviu como complemento de estudo para a graduação pois, contempla conteúdos que não foram abordados na formação. Outro fator importante foi o desenvolvimento e aprendizagem na utilização dos softwares LaTeX e Mathematica que são ferramentas fundamentais para elaboração de relatórios, gráficos e cálculos númericos.

Referências

- [1] J. Sotomayor, Lições de Equações Diferenciais Ordinárias, Projeto Euclides, 1979;
- [2] F. Verhulst, Nonlinear differential equations and dynamical systems, Universitext, Springer, 1991;
- [3] J. LLIBRE, A. C. MEREU AND M. A. TEIXEIRA, Limit cycles of the generalized polynomial Liénard differential equations, Mathematical Proceedings of the Cambridge Philosophical Society, 2010.
- [4] LIMA, E. L. Análise Real, v.1. 11 ed. Rio de Janeiro: IMPA, 2012. 189 p. (Coleção Matemática Universitária)
- [5] LIMA, E. L. Análise Real, v.2. 5 ed. Rio de Janeiro: IMPA, 2010. 202 p. (Coleção Matemática Universitária)
- [6] EUZÉBIO, Rodrigo D. O Método do Averaging via Teoria do Grau de Brower e Aplicações. 2011. 71f. Dissertação de Mestrado. Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho. São José do Rio Preto. 2011.